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We study the dynamic sof gas or vapour bubbles when the volume mode of oscillation 
is coupled with one of the shape modes through quadratic resonance. In particular, the 
frequency ratio of the volume mode and the shape mode is assumed to be close to 
two-to-one. The analysis is based upon the use of a two-timescale asymptotic 
approximation, combined with domain perturbation theory. The viscous effect of the 
fluid is included by using a rigorous treatment of weak viscosity. Through solvability 
conditions, amplitude equations governing the slow-timescale dynamics of the resonant 
modes are obtained. Bifurcation analysis of these amplitude equations reveals 
interesting phenomena. When volume oscillations are forced by oscillations of the 
external pressure, we find that the volume mode may lose stability for sufficiently large 
amplitudes of oscillation, and this instability may lead to chaotic oscillations of both 
the volume and the shape modes. However, we find that for chaos to occur, a critical 
degree of detuning is required between the shape and volume modes, in the sense that 
their natural frequencies must differ by more than a critical value. When a shape mode 
is forced by oscillations of anisotropic components of the external pressure, we find 
that chaos can occur even for exact resonance of the two modes. The physical 
significance of this result is also given. 

1. Introduction 
The dynamics of a single spherical bubble forced by a periodic pressure field has been 

studied extensively. The review article of Plesset & Prosperetti (1977) describes the 
literature up to the mid-1970s. Recently, the primary research focus has been on 
nonlinear aspects of the bubble motion including, in particular, the existence of chaotic 
oscillations of bubble volume. The work on this suject can be conveniently divided into 
two classes according to whether the bubble is composed of gas or vapour (the 
difference lies in the fact that the volume of a vapour bubble can become unbounded 
for sufficiently large initial spherical perturbations from the equilibrium radius). For a 
gas bubble, Lauterborn & Parlitz (1988), Smereka, Birnir & Banerjee (1987), and 
Parlitz et al. (1990) have shown that a single spherical bubble under isotropic periodic 
pressure variations can oscillate chaotically leading to dynamics on a strange attractor. 
For a vapour bubble, Szeri & Leal (1991) have used a generalized Melnikov theory due 
to Wiggins (1988) to calculate threshold values of the forcing amplitude for the onset 
of chaotic oscillations which occur via the breakup of the homoclinic orbits. They have 
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found that the threshold values depend on the complexity of the forcing function; 
namely, the presence of two or more forcing frequencies lowers the critical amplitude 
of the pressure perturbations, relative to that required for a single-frequency oscillation. 

Many predictions concerning regular motions in the nonlinear regime for a single 
bubble in a time-varying pressure field have been reproduced in experiments reported 
by Crum & Prosperetti (1983). However, the chaotic oscillations predicted in the above 
numerical and theoretical work have not been seen. Attempts to achieve chaotic 
oscillation of bubble volume (radius) have apparently been thwarted by the onset of 
noticeable shape oscillations, see Holt & Crum (1992). Since all of the numerical as well 
as analytic works cited above are based on the assumption that the bubble remains 
spherical, a new theory which includes the coupling between shape and volume 
oscillations is required to understand chaotic dynamics of a single bubble as seen in 
experiments. 

Chaotic bubble oscillations, when one (or more) shape modes is coupled with the 
volume mode, can also provide at least one explanation for interesting new physical 
phenomena. Among them is the erratic position of a bubble in a sound field (called 
dancing) when the amplitude of the sound exceeds a certain threshold (Strasberg & 
Benjamin 1958; Benjamin & Ellis 1990). Other phenomena, to be examined later in this 
paper, are associated with large-amplitude shape oscillations when chaos arises. In 
these circumstances, the amplitude of the shape oscillations will be time dependent and 
the peak amplitude of the shape mode can be much larger than the time-averaged 
amplitude. Large-amplitude shape oscillation implies large shear stresses near the 
surface of the bubble, which may be very important in certain applications. For 
example, large shear stresses can be the cause of damage in biological systems exposed 
to ultrasound (Young 1989, chap. 3). 

In this paper, we study the bubble dynamics when the breathing mode is coupled 
with one of the shape modes through quadratic resonance, which occurs when the 
frequency ratio of the breathing mode to the shape mode is two to one. This 
relationship between the frequency of the breathing mode and the frequency for any 
one of the possible shape modes is satisfied for a specific bubble size. Although 
resonant interactions are also possible for a number of other conditions of frequency 
matching, the two-to-one resonant condition corresponds to the fastest energy transfer 
between the modes; see Yang, Feng & Leal (1993). For this reason, we postpone to a 
later paper any study of the weaker and slower resonant combinations that occur under 
other resonant conditions. Additional discussion of the motivation for studying the 
two-to-one internal resonance is contained in Longuet-Higgins (1989). We study two 
types of pressure forcing. First, we study isotropic forcing, where the breathing mode 
is excited by nearly resonant forcing and one of the shape modes obtains energy 
through resonant interaction with the breathing mode. Second, we study anisotropic 
forcing (corresponding to a position-dependent pressure at the bubble surface), where 
one of the shape modes is excited by nearly resonant pressure oscillations and the 
breathing mode obtains energy through nonlinear coupling. 

Part of the objective of this paper is to present a comprehensive picture of the several 
bifurcation sequences that are possible. We achieve this objective by presenting 
bifurcation sets, where the system parameter space, such as the forcing frequency 
and amplitude, is divided into a finite number of sets, inside which the qualitative 
behaviour of the system is the same. We also present bifurcation diagrams, which 
demonstrate how the qualitative behaviour changes as one of the system parameters is 
changed while the rest remain fixed. 

There are two prior studies that are closely related to the problem to be studied here. 
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First, is the work of Mei & Zhou (1991) who studied the resonant interaction between 
a spherical (pure volume) oscillation and one or two distortional modes for a bubble 
in water when the spherical mode is forced by ambient sound, i.e. by periodic 
oscillation of an isotropic pressure field. They have found numerical evidence of 
chaotic bubble oscillations. Mei & Zhou suggested that this result, combined with the 
theory of Benjamin & Ellis (1990), provided one mechanism to explain the erratic 
dancing of a bubble in sound. Since Mei & Zhou were mainly interested in providing 
a phenomenological explanation for the erratic dancing phenomenon, the bifurcation 
sequence that leads to chaotic motion was not explored. However, knowledge of the 
bifurcation sequence will be crucial in any attempt to corroborate theory with 
laboratory experiments. Further, we shall see that the bubble response is quite different 
when the pressure forcing is anisotropic instead of isotropic as considered by Mei & 
Zhou. 

The second related work is our own recent publication, Feng & Leal (1993), on the 
oscillation of an initially perturbed bubble in an inviscid fluid, but without time- 
dependent pressure forcing. In that paper, we considered both one-to-one and two-to- 
one internal resonance conditions between the radial (or volume) mode and one of the 
distortion modes. In the latter case, it was shown that when the initial amplitude of the 
radial deformation exceeds a threshold value (that depends upon the proximity to exact 
resonance) a homoclinic orbit appears (in a reduced two-dimensional description of the 
modal amplitude dynamics) which emanates from the fixed point that corresponds to 
purely radial oscillations. It is thus clear that the addition of a periodic pressure 
perturbation of any amplitude to this inviscid system will produce chaotic dynamics in 
at least the vicinity of the unperturbed homoclinic orbit. Further, if a very weak 
damping is added, of 0(P) for n > 1 (where the amplitude of the bubble deformation 
is O(e)), chaotic dynamics will still be realized if the amplitude of the forcing is large 
enough. However, if the viscous damping is any larger, it is impossible to anticipate the 
dynamic response to periodic forcing (cf. Kovacic & Wiggins 1992), and it is this latter, 
more difficult, class of problems that we consider here, via the special case in which the 
damping is 0 ( e )  and the forcing of O(e2). 

The paper is organized as follows. In 92, we combine the asymptotic method of 
domain perturbations with a multiple-timescale analysis (cf. Nayfeh & Mook 1979) to 
derive governing equations and boundary conditions for bubble deformation at 
successive orders in the amplitudes of shape and volume modes In 93, solvability 
conditions are used to obtain governing equations for the slowly varying amplitude 
functions that occur at resonance. In 94 we show that the amplitude equations for the 
shape mode can be generalized to include forcings whose frequency is away from the 
resonance. In 995 and 6, bubble dynamics under isotropic and anisotropic forcing are 
studied separately. A discussion of the physical consequences of the participation of 
shape modes in bubble oscillations due to isotropic pressure fluctuations is given in 97. 

2. Formulation of the problem 
Our problem formulation is closely related to that in Yang et al. (1993). We modify 

that formulation, however, to include weak viscous effects. 
Consider a bubble of radius a in the quiescent state. Characteristic scales for length 

I, ,  time t,, and pressurep, are then identified as a, (a3p/r)i,  and r / a ,  respectively, where 
r i s  the surface tension and p the density of the liquid. The viscosity of the liquid is said 
to be weak if the parameters S = t,/(az//v) is small. For air bubbles in water with radius 
between 0.01 and 1.00 cm, taking r = 75 dyne cm-l, p = 1 g cmP3, v = 0.013 cm2 s-l, 
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FIGURE 1 .  The coordinate system that describes the bubble geometry. 

we have S lying between 0.015 and 0.000 15. We can thus assume S 6 1. (For small 
bubbles, however, other mechanisms of energy dissipation may dominate that due to 
viscous effects, see Longuet-Higgins 1989.) This assumption, combined with the 
assumption that the deformation of the bubble from its equilibrium spherical shape is 
small, allows us to approximate the motion as potential flow with a thin boundary 
layer near the surface of the bubble. Thus if we denote the non-dimensionalized 
velocity potential for the liquid as $, and specify the non-dimensionalized bubble 
deformation via the function5 i.e. F = Y- 1 -f($, t )  = 0 in spherical coordinates (see 
figure 1), we have the equation governing the liquid motion: 

Vz$ = 0 for r > 1 +AO, t) ,  (1) 

and on the bubble surface we have the kinematic boundary condition: 

i3F 
- + V $ * V F  = 0. 
at 

Kang & Leal (1988) have utilized an analysis similar to that of Prosperetti (1977) to 
conclude that weak viscous effects in the boundary layer are equivalent to a 
modification of the dynamic boundary condition. The normal stress condition, with 
the pressure correction and viscous stress terms included is 

where Po denotes the non-dimensionalized pressure at infinity; P“ denotes the pressure 
inside the bubble; pv is the pressure correction, which will be explained in a moment; 
and a/&’ denotes differentiation in the direction of the outward normal vector. 

We call attention to the term A(8,t) in the normal stress condition (3). This 
represents an imposed time- and spatially dependent pressure at the bubble surface. 
This type of surface pressure is often called the radiation pressure. In experiments, 
spatially and time-dependent radiation pressure can be produced via the superposition 
of two ultrasonic acoustic wave fields with slightly different frequencies, see Marston 
& Apfel(1980). We restrict the analysis to axisymmetric surface pressure distributions 
in thls paper. Specifically we consider two cases. In the first, which will hereafter be 
referred to as the isotropically forced case, we consider the surface pressure to be a 
time-periodic function but independent of 8. In the second case, which will hereafter 
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be referred as the anisotropically forced case, we consider the surface pressure to be a 
time-periodic function but dependent on 8. In order to facilitate the problem 
formulation, we shall let 

A(8, t) = A ,  cos 2Qt + A ,  cos DtP,(cos O ) ,  (4) 
where P,(cos 8) is the Legendre polynomial of cos 8. Since we consider the two cases 
(A,  + 0 and A ,  ?= 0) separately, there is no need to allow a phase separation between 
the two forcing functions. It should be noted that the characteristic frequency D is 
non-dimensionalized (scaled) with respect to the characteristic timescale (a3r /p) i .  

The viscous pressure correction pv can be calculated when the parameter S is small 
and the deformation of the bubble from the spherical shape is also small. In that case, 
Kang 8z Leal have obtained m 

PV = S C Tm pm(cos 4, ( 5 )  
m=o 

where Tm is determined from the shear stress condition on the bubble surface, 

The pressure inside the bubble P" depends on the gas content of the bubble. In this 
paper, we consider both a gas bubble and an isothermal vapour bubble (by a vapour 
bubble, we mean a bubble that has partial pressure due to the vapour content). For a 
gas bubble, the pressure inside the bubble is assumed to obey the perfect gas law 

in which (. ) denotes the spherical surface average. For axisymmetric problems 
F = &(l + f ) 3 ) > - ' ,  (7) 

(g(8)) = fIg(8)sinO(dH), 

4 is the equilibrium pressure for a spherical bubble, (i.e. 8 - P o  = 2) ,  and y is the ratio 
of the specific heats. For an isothermal vapour bubble, the pressure inside the bubble 
can be assumed to be 

(8) P" = 4 ((1 +fl3)>-' + 4, 
where 6 and 8 are the partial pressures inside the bubble at the quiescent state due 
to the gas and the vapour respectively. Both are constants for isothermal processes. 

For f small, the method of 'domain perturbations' can be used to express the 
boundary conditions on the deformed bubble surface in terms of asymptotically 
equivalent boundary conditions on the undeformed surface, r = 1; see Joseph (1973). 
With the above assumptions and definitions, the kinematic boundary condition at 
r = l i s  

and the normal stress condition is 

'9+ (V," + 2) f - ((3; +2) ( f )  = A(8, t) -f--#7$)2+ a2$ 2JT f + vy) a t  a t  ar 

a z $  
00 

ar m=, 
- 2 S 7  + S C mTm Pm (cos 8) + Ocf3), 
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where 

and w: = 37(Po + 2) - 2 for an ideal gas bubble, w: = 3(P0 - 
isothermal vapour bubble. 

of Q, and t, 

+ 2) - 2 for an 

For convenience of treating near-resonant cases, we introduce an additional scaling 

t"= at, 6 = Q,/n 
to obtain v26 = 0 (9) 

and the boundary conditions at r = I 

_ _ _  a26 af a6 " =fT-(l -q2)--+Higher-order terms, 
at" ar ar a7 a7 

a26 o' 

+(4u:+2)((f2) -$(l +?) (f)2}-2SQ!rZ+S mT,P,(q)+Higher-order terms. 
m=O 

(1 1) 

In summary then, the problem is to solve the differential equation (9) subject to the 
conditions (10) and (11). 

The analysis that follows is based upon the use of an asymptotic approximation of 
the solution for a small parameter E .  Since we limit our consideration to conditions of 
quadratic resonance (or near resonance) between shape and volume modes and/or 
resonance between the oscillatory modes and the forcing A(0, t), it is convenient to 
anticipate from the outset that resonant interactions will occur on a much longer 
timescale than that associated with the forcing, and introduce a second 'independent' 
timescale 7 as defined below. Thus, the shape functionfand the velocity potential Q, are 
expanded in the forms 

r = 1 +f= 1 +~fi(t",7,7)+~2f(t",,,q)+ ..., (12) 

where 

is the slow timescale characteristic of the resonant interaction between shape and 
volume modes (we express 7 in terms of the original dimensionless time t so that the 
time-like variable t" will not be used in later analysis). As stated above, the present 
analysis is focused on the condition in which the natural frequency for oscillation of 
the nth shape mode is approximately one-half the natural frequency for purely radial 
volume oscillation, so that resonant interactions occur at O(e2). In particular, we allow 
for an O(E) mismatch between the natural frequencies of the purely radial and shape 
modes of bubble oscillation, so that 

wo = 2w, +€PO, (15) 

where w: = (n- l)(n+ l)(n+2). In addition, we consider the forcing frequency for 
anisotropic pressure oscillations to be 

n = W,+€V, .  (16) 
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Taken together, the conditions (1 5)  and (16) also imply that the forcing frequency for 
isotropic pressure fluctuations (252) is within O(E) of the natural frequency of the 
volume mode (w,). Since we are forcing the bubble to oscillate near its resonance 
frequency, we assume that the forcing amplitudes - - 

A,  = !?AO, A ,  = EZA, (17) 

are of second order in E so that the shape deformation is no larger than first order. 
Restricting our analysis to a weakly viscous fluid, we further assume 

S =  Es" (18) 

and Tm = ET, ,+s~T, ,+  ... . (19) 

v"l = 0, (20) 

Substituting (12)-(19) into (9), (10) and (l l) ,  we obtain at O(e): 

with the boundary conditions at r = 1 

At O(e2), we obtain 
V2$h2 = 0, 

with the boundary conditions at r = 1 

a24 - 
+A,cos2f+A",cos ?P,(+wk f -4-~w;(v~,)2+2fliV;+v," f ] )  

at ar 

a24 m 
+(wk+2){(f?)-;(l +r) (f,)3-2s"un*+s" C mT,,Pm(7). (25) 

m=o 

The term T,, can be determined by substituting (19) and (13) into (6) to get 

In the analysis that follows, we solve the hierarchy of equations (20)-(26) to study the 
bubble response to either an isotropic or an anisotropic pressure oscillation. 

A general solution of the governing equation at O(E) is easily obtained by separation 
of variables: 
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The occurrence of w ,  is due to the peculiar choice of the timescale. Here, k = 0 
corresponds to the volume mode and k 2 2 correspond to the shape modes (k  = 1 
corresponds to translation of the bubble and will hence be excluded from our analysis). 
Although the general solution allows for all possible modes (excluding k = l ) ,  the fact 
that the system is damped at O(c), and is forced with pressure fluctuations that are only 
O(c2) in amplitude, means that it is only the two modes that are in quadratic resonance 
with each other, and with the forcing, that will be present at O(c). Hence, without loss 
of generality we let 

f, = ${al,o(r) eZif+al,,(r) eifPn(q)> +c.c., (27) 

al,,(r) eifPn(q) +c.c., 1 1 
2(n + 1) P" 

= -i[ial,o(r)e2ic+ r 

where C.C. denotes complex conjugates of the preceding terms. It is obvious that these 
functional forms satisfy the governing equation (20) as well as the boundary conditions 
(21) and (22) at O(E). 

The problem at O ( 2 )  can now be approached using the solutions (27) and (28) at 
O(c). Specifically, by substituting (28) into (26), we obtain 

Then, substituting (27)-(29) into (24) and (25), we obtain the following forms for the 
boundary conditions at O(c2) : 

"' 
a? ar 

= C A,, eimiPk(q) + c.c., 

(31) w i  2 + (V," + 2 ) f ,  - (40: + 2) <f,) = C B,, eimcPk(q) + c.c., 

where m = 1,2,3,4, and k = 0,2,4, . . ., 2n and also k = n (the expansion of Pi(q) gives 
rise to terms Po(q), P,(q), ..., Pz,(q)). Among the values of A,, and Bmk, only the 
following four are needed in the later calculations: 

a$ 

S - -  :+g:] 011, n 
iw, da,,, A", [i(2n+ l ) (n+2)o ,  - B,, = ~ _ _  

2(n+l)  d7 2 n+l  

(n - l)(n + 2)(3n + 1 )  + 4 a1,0aT,?V 

where a superscript * denotes complex conjugate of the variable. 
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To solve for $2 and f,, we can use the method of superposition. However, as we 
proceed, we encounter secular terms which cause the solution at O(2) to be unbounded 
unless certain conditions are satisfied. Imposing these conditions for boundedness of 
the solution at O(2), we obtain dynamical equations for the O(e) amplitude functions 
a1,, and a,,, given in the following section. 

3. Solvability conditions and amplitude equations 
Using the method of superposition, we assume 

f, = C a,, eimtPk(T) + c.c., q42 = C b,, r-(”’) eimf &(T) + C.C. (33 a, b) 

and substitute these expressions into the boundary conditions (30), and (31) to obtain 
algebraic equations for a,, and b,,. For k = 0, we find 

and for k + 0, 

im k + l  ‘mk 

( - ( k -  l)(k+2) imw:)(b,,) = (Bm,)‘ (3 5 )  

It is easy to see that the matrix in (34) is singular when m = 2 and the matrix in (35) 
is singular if m = 1 and k = n. In these two special cases, if a,,, b,,, a,,, and b,, are to 
remain bounded, the vectors on the right-hand sides of (34) and (35) have to be 
perpendicular to the left-eigenvectors corresponding to zero eigenvalue of the matrices 
in (34) and (35) respectively. The two left-eigenvectors corresponding to zero 
eigenvalue of the matrices in (34) and (35) are 

( 2 i 4 ,  - 1) and (iwZ,, - 3). 
Hence, we obtain 

(36 a, b) 

Substituting the coefficients (32) into these equations, we obtain the following 
equations for the slowly varying amplitude functions of the O(e) solution, (27) and (28), 

2ioi A,, - B,, = 0 iwi A,,  - 3B1, = 0. 

- 1 -  
&!.L!? = -2Sa1,,+(P,-20-,)ia1,,+i---A,+iH5a~,,, 

dr 40, 

n w n + l  - 
- = - NSa,, , - iv, al, , + i - A ,  + iH, al,, a:,,, 

dr 2wn 

(374  

(37 b) 

and N = (n + 2)(2n + l), (38) 

and 
(4n - 1) w, 

- 16(n+ 1)(2n+ 1)’ 
(4n - 1) w, 

4 ’  
H -  H, = (39 a, b) 

as defined in Yang et al. (1993). 
It may be noted that the procedure described above for derivation of the amplitude 

equations (37) is discussed in detail in Nayfeh & Mook (1979), and the interested 
reader may find this reference useful in understanding the present work. In any case, 
the amplitude equations, in the undamped and unforced case, that is when j ,  A,, and 
2, are identically zero, agree with the amplitude equations of Feng & Leal (1993) for 
the quadratic resonance case, which were shown earlier (by Yang et al. 1993) to agree 
with those of Ffowcs Williams & Guo (1991) and Longuet-Higgins (1991). When 
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A“, = 0, the form of (37) also agrees with the governing equations of Mei & Zhou 
(1991). 

In (37), the terms associated with s” are due to the weak viscous effect. They are 
identical to those of Lamb (1932). From the expression for N ,  we note that the 
dissipation associated with higher modes is much stronger than that of the lower 
modes. The terms involving A”, and A”, are due to isotropic and anisotropic pressure 
forcing respectively. As explained in Feng & Leal (1993), the quadratic coupling terms 
associated with H5 and He are caused by the nonlinearity of the boundary conditions. 

Finally, we should note that the nonlinear resonance terms in (37) are quadratic by 
assumption. Cubic terms which would reflect the nonlinearity of individual mode 
oscillation, such as the dependence of free oscillation frequencies upon the amplitudes, 
are of higher order and thus not included in our amplitude equations. Consequently, 
when the shape mode has a zero amplitude, the amplitude equation for is linear, 
which is equivalent to the linearized Rayleigh-Plesset equation after the averaging 
procedure is applied. 

In order to see the effect of detuning from exact resonance, i.e. of non-zero values 
for u, and Po, we set #, A”,, and A”, to zero and neglect the quadratic nonlinear terms. 
Then solving (37), we obtain 

~ , , ~ ( 7 )  = Coe(’j’O-2un)T, al,,(7) = C, e-“.’, 

where C, and C, are constants determined by the initial conditions. Substituting these 
into (27) and recalling that t“= 0 t ,  7 = et, we have 

f, = 1 0  , (7) e2iQt+dPo--2un)t + al,,(7) eint-s“nt P,(T,I)} + c.c 

2 0  +@, - 2a,) = w0, 0 - €u, = w,. 

From (15) and (16), we have 

We see that the breathing mode is oscillating at wo and the shape mode is oscillating 
at w,, as they should. Hence terms associated with u, and Po restore the frequencies 
of small-amplitude free oscillation of the two modes to their respective natural 
frequencies. The parameters B, and Po are known as the external and internal 
frequency detuning parameters, respectively. When u, = 0, the external periodic 
forcing is in exact resonance with the shape mode. When u, =:Po, the external 
periodic forcing is in exact resonance with the volume mode. 

Note that none of the constants in (37) depends on whether the bubble is a gas 
bubble or a vapour bubble. This implies that our amplitude equations are equally valid 
for studying the dynamics of ideal gas bubbles and isothermal vapour bubbles. This 
seems inconsistent with the known difference between an ideal spherical gas bubble and 
an isothermal spherical vapour bubble as described by the Rayleigh-Plesset model. An 
ideal spherical gas bubble in an inviscid fluid will undergo periodic oscillation for any 
initial perturbation of the bubble radius, see Smereka et al. (1987). However, the same 
is not true for a vapour bubble. Szeri & Leal (1991) have shown that for a vapour 
bubble there exists a critical initial perturbation of the bubble radius, above which the 
bubble radius will grow to unbounded values. Periodic oscillation of vapour bubbles 
is only possible for perturbations below this critical value. This is because expansion 
of the radius of a vapour bubble leads to a diminished restoring surface tension force 
but with an unabated vapour pressure inside the bubble. For the gas bubble, on the 
other hand, the gas pressure inside the bubble decreases as the volume increases, and 
this provides a restoring force of increasing magnitude to resist bubble growth. Why 
is the difference between the two types of bubbles not reflected in our amplitude 
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equation (37)? The answer, as stated earlier, is that we neglect terms beyond quadratic 
in the amplitude equations, which means that we retain only the linear approximation 
of the Rayleigh-Plesset equation. At that level of approximation, the difference 
between the gas bubble and the vapour bubble is absent. 

We observe that for fixed n, the dynamical system (37) depends on four parameters. 
These parameters are $, a,, pa, and do (or A,) which correspond to the dimensionless 
magnitude of the viscosity, the external frequency detuning, the internal frequency 
detuning and the magnitude of the periodic forcing respectively. In order to simplify 
the equations, we let 

(40 a, b)  

to obtain c i ,  = - ( 2 / N )  a, + i(p- 2a) a, +id, + iak, 
ci, = - a, - iaa, + id, + ia, a,*, 

where the dot stands for differentiation with respect to N&. The parameters A,, d,, a, 
p are proportional to A”,, A”,, cr,, and Po. They correspond to the magnitude of the 
forcing amplitudes and detuning parameters relative to the dissipation. The limit 
/3 = 0 corresponds to exact internal resonance, while cr = 0 and cr = $ correspond to 
the two exact external resonance cases. 

We note that (41) possess ‘parameter symmetry’: if we change (p, a, a,, a,) into (-p, 
-a, -a,*, -a,*), the new dynamical system is identical to (41). Therefore, we only 
need to study the dynamics for positive values of /3 and obtain the result for negative 
p by a simple reflection. In the following analysis, we will asume /3 2 0. 

To carry out an analysis of the system (41), it is often convenient to introduce the 
transformation 

in order to write this dynamical system in double polar coordinates: 
a, = roeiflo, a n n  = y (42) 

2 
N 

i, = - - y o  - r t  sin (20, - 0,) + A ,  sin B,, (43 4 

r2 A 

TO YO 
8, = p- 2a+-21cos (20, - 0,) + d c o s  0,, 

in = - rn + r ,  rn sin (20, - 8,) + d, sin On, 

(43 4 
A 

rn  
8, = - cr+ ro cos (20, -8,) + ~ c o s  o,, 

However, one disadvantage of the polar form (43) is that it is singular at ro = 0 or 
r ,  = 0, which is an artifact of the use of polar coordinates, i.e. when ro = 0 or rn = 0,0, 
and 0, are undefined. To compensate for this disadvantage, we can also write (41) in 
terms of rectangular coordinates by letting 01, = x, + iy,, a, = x, + iy, to obtain 
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Equations (44) are uniformly valid and are made more general in the Appendix. 
They are, in fact, used for much of the subsequent analysis and for all numerical 
computation. Nevertheless, if the singularity at r ,  = 0 or r ,  = 0 can be avoided, system 
(43) is algebraically more convenient to use. Furthermore, since r ,  and r ,  are directly 
proportional to the physical amplitudes of the volume and shape modes, we will 
generally use them to present our results even when the analysis or computation has 
been done using the rectangular coordinate form, (44). 

Since the rest of this paper will be based on a study of the amplitude equations (41), 
in either the form (43) or (44), it is convenient to summarize the relationship between 
the present variables and the physical variables. By physical variables we mean the 
dimensionless variables scaled by I,, t,, and p c .  Starting from (40), we see that once a, 
and a, are determined, accurate up to O(e), the physical amplitudes of the two modes 
in complex form are 

(4n - l)(n + 2) 0, 
8 

Sa, €al,, = 
4(n + 2)(2n + 1) 

= (4n - 1) w, 

respectively. In deriving the above, formulae (12), (18), (27), (38) and (39) have been 
used. The parameters in (41) (or (43) and (44)) are related to physical parameters 
according to the following formulae : 

A -  4n- 1 4 A ,  = 4n- 1 (%rA (46a,b) 
- 16[(n+2)(2n+ 1 ) ]2p ’  16[(n + 2)(2n + 1)12 2n + 1 S2 ’ 

w, - 20, sz-0, 
0-= ’= (n+2)(2n+1)~’  (n + 2)(2n + 1) S’ 

All quantities on the right-hand side of (46) are physical quantities. The time-like 
variable implicit in (41), (43) and (44) is (n + 2)(2n + 1) St, where t is the dimensionless 
time. Note that the small parameter e does not occur explicitly in (46). 

Finally, it is perhaps useful to emphasize that the jixed points of the slow-time- 
variable dynamical system, (41), in either of the forms (44) or (43), correspond to 
periodic motions of the bubble on the short timescale, 2. This can be seen clearly by 
recalling the relationship (27). In the form (43), the meaning of ‘fixed point’ is that 
i,, i,, 8, and 8, are all zero, and the same is true of i,, i,,j, and 3, in (44). This may 
be contrasted with the polar representation of a typical two-variable dynamical system 
(cf. Guckenheimer & Holmes 1983, 8 1.5) in which periodic orbits correspond simply 
to fixed points of the amplitude function r only (a point of confusion with one of our 
referees). 

One of our objectives in this paper is to study the stability of spherical bubble 
oscillations under non-spherical perturbations. The amplitude equations in (41), in the 
special case of A ,  = 0, are suitable for this purpose. However, in deriving these 
equations, we have required that the natural frequencies of the volume mode and the 
shape mode satisfy the resonance condition (1 5). Intuitively, we expect that the stability 
of the volume mode should only depend on the amplitude of the volume mode and be 
independent of this resonance condition. Hence, before we move on to study the 
amplitude equations (41), we derive another set of amplitude equations that are valid 
when the internal resonance condition (15) is not satisfied. 
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4. Generalization of the amplitude equations to include the internally non- 
resonant case 

Consider an isotropically forced bubble oscillation. Assume that the forcing 
frequency (20) is approximately twice that of the shape mode, so that (16) holds. At 
the same time, we assume that the natural frequency of the volume mode is not close 
to 2l2, i.e. (15) is violated. Then in order to generate an O(e) volume response, the 
magnitude of forcing has to be of O(e) instead of O(e2). That is 

A, = €AO 

For this case, the governing equation at O(e) is 

w 

v2+, = 0 (47) 
but the boundary conditions at r = 1 become 

(48 b) 
a(b 
at 

(0; r+ (V," + 2 ) f ,  - (w; + 2)( f , )  = A", cos 2t: 

Substituting (27) and (28) into the above, we find that (47) and (48) are satisfied by 

with arbitrary a,,%. The denominator of (49) is of O(1) since (15) is violated by 
assumption. The solution (49) corresponds to a radial oscillation at O(s) on the same 
timescale as the pressure forcing. 

In this case at O(e2), we obtain 

and the boundary conditions at r = 1 

VZ(bZ = 0, 

%-?& = Am,eimiP,(v)+c.c., at" ar 

Since 414-(0; = 0(1), instead of two solvability conditions we now obtain only one 
solvability condition, which is 

We see that (50) is identical to (37b). However, the interpretation of (49) and (50) is 
different from the interpretation of (37). In (37), the two modes and al,.% are 
competing modes, hence the dynamics are more interesting, with the possibillty of 
interchange of energy back and forth, between shape and volume oscillation. In (49) 
and (50), on the other hand, the two modes are like a master and a slave. The amplitude 
of the volume mode, al,o, is completely determined by the forcing, equation (49), and 
the dynamics of is completely determined by its master al,, through (50). 

8 FLM 266 
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Later, we shall use (37) to discuss the stability of the purely radical oscillation to non- 
spherical perturbations. The above discussion shows that any result based on (37) can 
be equally applied to the case when the isotropic forcing frequency is not near the 
natural frequency of the volume mode, an assumption used in deriving (37). 

5. Dynamics of an isotropically forced bubble, A ,  = 0 
In the remaining sections, we study bubble dynamics based on the analysis and 

simulation of the amplitude equations (43) or (44), whichever is more appropriate. The 
results of our analysis will be presented in the form of bifurcation sets and bifurcation 
diagrams. The bifurcation sets delineate the regions of parameter space, including 
forcing frequency and forcing amplitude, within which the qualitative behaviour of the 
system, e.g. the number of fixed points and their stability, remains the same. The 
bifurcation diagrams show the bubble response, e.g. the amplitudes of the volume and 
shape modes, plotted against one control parameter (the driving frequency or 
amplitude). The simulations were done using a fourth order Runge-Kutta integration 
routine from IMSL. 

The isotropically forced case, A ,  = 0, has been studied by Mei & Zhou (1991). In the 
absence of internal detuning p = 0, Mei & Zhou did not find a chaotic response. 
Instead chaos was found only for non-zero values of p. Their work suggests that there 
exists a critical p,, below which no chaos can occur. Our goal in the present section is 
to calculate p,, and to determine bifurcation sets and obtain bifurcation diagrams that 
completely describe the dynamics. As indicated in the introduction, this information 
should be indispensable for guiding experimental studies, and explaining experimental 
results. 

The bifurcation analysis of the system (41) starts with the fixed points and an 
analysis of their stability. Analysis of this kind, for the special case of p = 0, has been 
done by Sethna (1965) and Miles (1984b) in the context of nonlinear oscillators. We 
present a more general treatment here. The equations in the double polar form, (43), 
are best suited for fixed-point analysis. We observe that there are two types of fixed 
points, those with rn = 0 and those with r ,  =+ 0. 

Fixed-point solutions with r ,  = 0 physically correspond to purely radial oscillations 
of spherical bubbles. Solving (43a) and (43b) for Y, and 8, at fixed points (i, = 0, 
8, = 0) with r ,  = 0, we find 

4 tan8, = - 2 
r: = 4/N2 + (p- 2 ~ r ) ~  ’ N(p - 2 4 .  

This solution corresponds to a purely radial oscillation at the frequency of the forcing 
(2Q) in dimensionless physical time. The stability of this solution to both spherical and 
non-spherical perturbations can be determined by calculating the eigenvalues of the 
Jacobian matrix of the system in the form (44), with (51) substituted. Among the four 
eigenvalues of the Jacobian matrix, two are given by the eigenvalues of the matrix 

1 - 2 / N  - - ( p - 2 ~ )  
( P 2  - 2 / N  

whose trace is negative and determinant is positive. Hence these two eigenvalues lie on 
the left half of the complex plane. The other two eigenvalues are given by the 
eigenvalues of the matrix 

--cr+x, - l+y,  
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It follows that the solution ( 5 1 )  is stable if and only if 

l+a2-(X:+y:) > 0, 

or, if expressed in terms of the amplitude r,, 

ri < l+a2. (52) 

Owing to the change of variables introduced in (40), this criterion obviously has a very 
simple form. By making substitutions summarized in (45) and (46), (52) can easily be 
expressed in terms of physical parameters, namely the amplitude of the volume 
oscillation, the external frequency detuning, and the viscosity factor S .  The result will 
be given and discussed in $7. 

If we substitute ( 5 1 )  into (52), we have conditions for the stability of the solution ( 5 1 )  
in parameter space: 

Again this inequality can be expressed in terms of physical parameters by using (46). 
Note that condition (52) does not involve the internal frequency detuning parater p, 
hence it is also valid for the internally non-resonant case discussed in $4. Condition 
(53),  on the other hand, is expressed in terms of the forcing amplitude, and does involve 
the internal frequency detuning parameter p. Hence it is valid only for the internally 
resonant case. Violation of either of the inequalities (52) or (53)  indicates that the pure 
radial oscillation is unstable to non-spherical perturbations. This will also become 
clearer later as we discuss bifurcation diagrams. 

Fixed-point solutions with r ,  + 0 correspond to non-spherical bubble oscillations. 
Since r ,  $; 0, solving (43c) and (43d) for ro and 28,-B,, we obtain 

do < ( ( 1  +a2)[4/N2+(/3-20-)2])t (53) 

ri = 1 +a2, tan(2B,-B0) = l / n ,  (54) 

r",+[2/N+a(P-2g)]rk+(l +a2)[4/N2+(P-2a)2]-Ai = 0. (55)  

A, > I P - 2 ~ - 2 a / h l .  (56) 

which can be substituted into (43 a) and (43 b). After eliminating 0, we obtain 

Equation (55)  is a quadratic equation for r:, which has real solutions only when 

Physically, this means that non-spherical bubble oscillations can only be driven by an 
isotropic pressure fluctuation with an amplitude above some critical value. In general 
there are two branches of solutions when (56) is satisfied; 

We denote the solutions corresponding to + and - signs as branch 1 and branch 2 
respectively. 

The stability of these branches is gain determined by the eigenvalues of the Jacobian 
matrix of the system (44), in this case evaluated with (57). The eigenvalues of the 
Jacobian matrix are given by the roots of the polynomial 

J4 h4 + J3 h3 + J ,  h2 + J1 h + Jo = 0,  
where 

J4 = 1 ,  J3 = 2 + 4 / N ,  J ,  = 4ri + 4( 1 + 2 N ) / N 2  + (/3- 2a)', 
J1 = 4ri(l +2/N)+8/N2+2(P-2a)',  J,, = )14r:[Ai-(/3-2a-2~r/N)~]~. (59) 

Following the Routh-Hurwicz criteria, a fixed point is stable if 

(i) J ,  > 0, (ii) J1 > 0, (iii) J3 J4 > 0, (iv) J,(J, J3  - Jl J,) - J ,  J :  > 0. 
8-2 
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It is obvious that branch 2 violates condition (i), and is therefore never stable. Branch 
1 satisfies the first three conditions, while condition (iv) becomes 

P+Qrk > 0, 

where P = 8/N5[4+N2(P-2g)'] [4(N+ 1)2+N2(/l-2~)2] (60) 

and Q = 8(2+N)2/N4{4(1 + N ) + N 2 [ 8 ( ~ - 3 P / 8 ) 2 - / 3 2 / 8 ] } .  (61) 
Since the coefficient P is always positive, a conservative condition for the stability of 
the constant-amplitude, non-spherical bubble oscillations corresponding to branch 1 is 
that Q 2 0, which is the case for 

P2 < P,", 
where p, = [32(N+ l)];/N. (62) 
Thus, provided there is a sufficiently close match between the natural frequencies, wo 
and w,, the bubble can sustain stable, non-spherical oscillations when subjected to an 
isotropic pressure forcing with amplitude satisfying the condition (56). 

When the equality holds in condition (iv), Hopf bifurcation occurs, which physically 
corresponds to a transition from constant-amplitude (non-spherical) oscillations to an 
amplitude-modulated oscillation of the bubble. This can be easily shown by noting that 
at a Hopf bifurcation point, there is a pair of pure imaginary eigenvalues, hence the 
characteristic equation (58) can be put in the form 

(A2 + w2)(h2 +ah + b) = 0, 

which is possible only when equality holds for condition (iv), namely 

P+Qri = 0. (63) 
We observe that P is always positive, and Q is positive for 

P2 < P,". 
Therefore, for p < p,, no Hopf bifurcation occurs and branch 1 remains stable. The 
exact location of the Hopf bifurcation point depends on the parameter A,.  Substituting 
(57) into (63), we get 

( A , ) H o p f  = { [p- 2V-$l2 + [$+ @- 2 4  -- 
Q 'Ti* 

For a fixed value of A,, by solving (64) we can obtain values of g, denoted cH1 and 
gH2 (cH1 < gH,) which may depend on /3, for which Hopf bifurcation occurs. 
Obviously, real solutions of (64) for exist only for Q < 0, which requires p > P,. 
Furthermore, it can be shown that 

--(---) 3p p2 N + l  < fJH1 < ITH2 < 
8 64 2N2 

Since N > 0, we observe that the Hopf bifurcation points lie within the interval 

$3 < (TH1 < cTH2 < ;p. 
The boundaries defined by (53) and (56), combined with (64), divide the parameter 

space into finite sets. For fixed values of N and p, the parameter space is two- 
dimensional (c, A,). For N = 20 (n  = 2) and p = 0, these boundaries (53) and (56) are 
plotted in figure 2. is not plotted since no Hopf bifurcation exists for p < p,, 
p, = 1.29. It appears that the two straight lines, corresponding to (56), intersect the 
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FIGURE 2. The curves defined by (53)  and (56) in the parameter space (a, do), p = 0. 
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FIGURE 3. Bifurcation sets in the (g, A,) space for /3 = 0. No Hopf bifurcation occurs in this case. 
Note that some line segments which do not correspond to any bifurcation have been removed. 

curve, corresponding to (53)’ tangentially. This can be shown by first calculating the 
intersection points (for arbitrary /? and N ) :  

We then show that the derivatives with respect to 0- of both boundaries are the same 
at the intersection point. Furthermore, numerical work indicates that line segments 
below the intersection points do not correspond to any bifurcation. They are thus 
omitted. 

We present in the following the detailed bifurcation analysis for three representative 
cases, ,8 = 0, 2 and 1. 

5.1.  /? = 0 
Figure 3 shows the bifurcation set for N = 20 (n = 2) and ,!3 = 0. Two straight lines, 
given by (56),  and a ‘parabolically’ shaped curve, given by (53), divide the parameter 
space (a, A,) into four open sets. In the set below the lines and the curve, there is one 
stable fixed point with the property r ,  = 0. This corresponds to radial oscillations of 
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0 
0 o p  0 s  

FIGURE 4. Schematic bifurcation diagram for /3 = 0 and A ,  > 
Thick lines, stable; thin lines, unstable. 

the bubble with the shape of the bubble remaining spherical. In the region inside the 
parabolically shaped curve, there is one stable fixed point with the property rB + 0. 
This corresponds to bubble oscillations where shape oscillation has set in due to the 
instability of the spherical bubble oscillations. The fact that this solution is stable 
means that any small perturbation, whether spherical or non-spherical, will not change 
the dynamics of the bubble except on a very short time period. Inside the two wedges, 
both of the above two fixed points exist. There are two possible types of stable bubble 
oscillations. In this case, after a brief transient, the bubble will settle to one or the other 
of these constant-amplitude oscillations, depending on the initial conditions. 

To understand how bifurcation takes place as the system parameters are changed, 
we first take a horizontal cut of figure 3 above the two intersection points L and R and 
draw a schematic bifurcation diagram by plotting ro and r ,  versus a .  This bifurcation 
diagram, figure 4, corresponds to response curves for fixed forcing amplitude, A ,  = 1, 
as the forcing frequency is slowly detuned. The values ap and as correspond to a-values 
at the intersection points of the horizontal line A ,  = const with the two curves in figure 
3 .  They can be determined by solving (53) and (56) for a with A ,  7 1 .  Since the 
bifurcation diagram is symmetric with respect to the plane g = 0 in the three- 
dimensional space (a, ro, r,), we describe the bifurcation sequences for a > 0. For large 
g, thus high forcing frequency according to (46), the response curve lies in the plane 
r ,  = 0, and the bubble oscillation therefore remains spherical. At a = ap, a subcritical 
pitchfork bifurcation occurs, where the spherical shape of the bubble loses stability. 
The stable fixed point for the amplitude functions jumps onto the mushroom-shaped 
curve on the hyperbolic surface r: = 1 + az.  Associated with this transition, a large- 
amplitude shape oscillation sets in. If we increase the forcing frequency from that point 
on, the shape oscillation remains for a above ap. However, eventually it loses stability 
at a saddle node bifurcation at as. Hence on the interval (ap,rs), a hysteresis 
phenomenon occurs. 

The pitchfork bifurcation at g p  seems unconventional in the sense that one expects 
the number of fixed points to change from one to three. The reason why this does not 
appear to be the case here, is because of the choice of coordinate axis of our bifurcation 
diagram. It is important to realize that since A ,  = 0, if (ro(t), O,( t ) ,  rn(t), O,( t ) )  is a 
solution (43), so is (r,(t),  O,( t ) ,  r,(t),  B,(t) + n). Therefore, for the branch bifurcating 
from the plane r ,  = 0 in figure 4, there is a mirror image. Here the mirror is the 
horizontal plane r ,  = 0. 

The bifurcation diagram for a fixed value of A ,  which lies between A ,  and A ,  (or AR)  
is similar to figure 4. Since the two straight lines in figure 3 ,  which correspond to the 
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Unstqble / -Unstable1 
(b) 

FIGURE 5. Schematic bifurcation diagram for /3 = 0 and for fixed value of v. (a) (u)L < cr < (v),. 
(b) u < (c)~, or v > (cT)~. Thick lines, stable; thin lines, unstable. 

saddle node bifurcations terminate at points marked L and R, a horizontal line of 
A ,  = const < A ,  will not intersect any saddle-node bifurcation. Hence the curve on the 
hyperbolic surface in figure 4 will be arch shaped instead of mushroom shaped. No 
jump phenomenon occurs. The transition to and from the shape mode is continuous 
and the pitchfork bifurcation at cp is supercritical. 

For A ,  < A ,  no bifurcation occurs. The response curve lies on the plane r ,  = 0 with 
a small peak at c = 0. Thus A ,  is a threshold, below which no shape oscillations can 
be excited. For the special case of p = 0. 

A ,  = 2 / N .  (66) 
An important and interesting phenomenon is that the hyperbolic surface 

r, = (1 + c2)a puts a cap on the magnitude of the purely radial breathing mode. An 
alternative way to visualize this is by fixing the forcing frequency and plotting the 
responses of the two modes as functions of A,. This is shown in figure 5(a, b). Figure 
5 (a) is a typical bifurcation diagram for fixed c lying on the interval (cL, eR). For small 
forcing amplitude, the response of the breathing mode increases in proportion to the 
increase of the forcing amplitude. However, after the maximum is reached, the 
breathing mode becomes unstable through a supercritical pitchfork bifurcation. 
Afterwards, the response of the radial mode becomes independent of the forcing 
amplitude. The extra energy due to the increased forcing amplitude is transferred 
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FIGURE 6. Bifurcation sets in the parameter space (u, do), for p = 2.  

completely to the shape mode. Figure 5 (b) is a typical bifurcation diagram for cr lying 
on the interval (crR, co) or (- co, crL) of figure 3. In contrast to the previous case, the 
breathing mode loses stability through a subcritical pitchfork bifurcation, but again the 
amplitude of radial oscillations is bounded by the surface Y,, = (1 + a2)t, which is flat in 
this figure since cr is a constant. 

As we pointed out earlier, there is no Hopf bifurcation for /3 < /I,. Hence, we have 
seen that there is at least one stable fixed point for all parameters for /3 = 0. The bubble 
undergoes oscillations of constant amplitude for any fixed pair (Ao,  cr), with a well- 
defined condition for instability of the purely radial mode, in terms either of the forcing 
amplitude A ,  for fixed cr, or the detuning parameter 

Since nonlinear systems may have more than one attractor, merely following one 
branch of solutions may not detect attractors in a different part of the phase space. We 
have therefore done numerical integrations for a large number of initial conditions for 
fixed parameters. Obviously, using this method, we cannot guarantee that all attractors 
will be found; nevertheless, the probability of attractors being undetected is small since 
we have tested a large number of initial conditions. Furthermore, we show in the 
Appendix that the attractor is contained within a finite hypersphere 

Hence we only need to search within the above hypersphere. 
Using numerical integration, we have not been able to find chaos for the case of 

/3 = 0. This is illustrative of the fundamental difference that usually exists between a 
damped and an undamped system (cf. Kovacic & Wiggins 1992). Recall that based on 
our previous work (Feng & Leal 1993), the modal amplitude equations for free 
oscillation in an inviscid fluid always have homoclinic orbits when /3 = 0, hence any 
periodic pressure perturbation would have led to chaotic oscillation of the bubble. 
However, the presence of damping in the current case has changed the outcome 
completely. 

5.2. /3 = 2 
Let us now consider the case /3 = 2 with N = 20 (n = 2). Since /3 > /3, (,4, = 1.29), it is 
not surprising that Hopf bifurcation occurs. Figure 6 shows the bifurcation sets for this 
case. We see that there is an open set inside which no stable fixed points of the 
amplitude functions exist. This means that the amplitude functions are always time- 
dependent in this zone. This physically corresponds to bubble oscillations with an 

for fixed forcing. 

xi +y: +xi +y; = ( ;A,y /N.  
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FIGURE 7. Projections into (a) (n, ro)-space, (b) (r, rJ-space, and (c) schematic perspective in 
(n, ro, r,)-space of bifurcation diagrams for /3 = 2 and A ,  = 1. Dots correspond to the maximum 
values of the time-dependent amplitudes (see Q 7.3). Solid lines, stable; dashed lines, unstable. 

amplitude that is modulated on the slow timescale 7. Note that one of the intersection 
points in figure 3, point L, is moved upwards and is almost out of the boundary of the 
figure. 

Figure 7 (ignoring the black dots for now, see $7.3) shows the bifurcation diagrams 
corresponding to a fixed value of do (= 1). Figures 7(a )  and 7 ( b )  show the projections 
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r, = 0 r, = const 

Periodic Chaotic Periodic Chaotic 

ro and rn are time-dependent functions = const ‘0 = const 

of the bifurcation diagram into (a, ro)- and (a, r,)-space. Figure 7 (c)  shows the same 
bifurcation diagram in perspective and is hence easier to visualize. Branches marked A 
and B denote fixed-point solutions of the amplitude equations which physically 
correspond to periodic motions of the bubble. In particular, Branch A corresponds to 
a purely radial response and Branch B corresponds to both radial and shape 
oscillations. The solid-line segments of the two branches denote stable regimes while 
the dashed-line segments denote unstable regimes. Since this bifurcation diagram is 
obtained for do = 1, the a-values at which bifurcation occurs can be obtained by 
taking a horizontal cut of the bifurcation sets in figure 6. As noted above, there is an 
open interval, (aH1, aH2), where a,, = 0.689 and aH2 = 0.938, on which no stable fixed 
point exists for the amplitude functions r, and r,. 

At the two Hopf bifurcation points aH1 and aH2, two new branches of periodic 
solutions come into existence. It is useful to know how these two branches of periodic 
solutions evolve as the parameter a is varied. The program AUTO for continuation 
and bifurcation problems in ordinary differential equations by Doedel (1986) is best 
suited for investigating this point. Given the coordinates of the fixed points for a 
particular value of a as starting points, the program automatically traces out the fixed 
point for all values of a in a given interval. At the same time, the program calculates 
the stability of the fixed point and locates bifurcation points on the solution branch. 
It can automatically switch to new branches bifurcating from the previous solution 
branches. Furthermore, AUTO allows us to follow the periodic solutions, which come 
into existence at the Hopf bifurcations, and to study the stability and bifurcation of 
these solutions as a varies. Denote the branches of periodic solutions generated at aH1 
and aH2 as branch 1 and 2. Using AUTO, we find for branch 1 that periodic solutions 
exist for a on the interval (aH1, 0.966). At a = aHl the periodic solution coincides with 
the fixed point. As a increases, the amplitude of the periodic solution increases. At 
a = 0.966, the amplitude of the periodic solution has grown such that it nearly hits the 
unstable fixed point r, = constant and r ,  = constant. When this occurs the period of 
the periodic solution becomes very large, indicating that the periodic solutions 
terminate at a homoclinic orbit. The Floquet multipliers of the periodic solution 
calculated by AUTO also show that the periodic solution near aH1 is stable. The 
stability is soon lost at a = 0.786 through a period-doubling bifurcation. For branch 
2, periodic solutions are found to exist for a on the interval (aH2, 1.000). These 
terminate at a = 1.000 where the periodic solution coincides with a homoclinic orbit 
that connects the unstable fixed point ro = constant and r ,  = 0 to itself. The branch- 
2 periodic solutions are unstable for all possible values of a. 

In order to study the nature of the attractors for a on the interval of (aHl, aH2), we 
again numerically integrate system (44) for a large number of initial conditions. Figure 
8 summarizes the nature of time-dependent attractors for a range of a-values. The 
attractors we found are periodic except for a between 0.791 and 0.805 and for a 
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between 0.890 and gH2,  where they are chaotic. In fact the latter interval of chaos 
extends beyond rH2 to (T = 0.960 so that for (T between crH2 and 0.960, both fixed-point 
attractors and chaotic attractors are possible. In figure 9, we plot numerically 
calculated projections of the phase diagrams into (r,,  r,)-space for various values of (T 

on this interval and for A ,  = 1 ,  /3 = 2. The transition from a stable fixed point at 
(T = 0.65 through regions of periodic and chaotic attractors with increase of (T is clearly 
visible, until finally another stable fixed point is achieved at (T = 1.  

Before we conclude our study of this case, we note that no chaos is found to occur 
when either r = 0, or (T = $, both of which correspond to cases of exact external 
resonances (Q = w, and 252 = wo respectively). 

5.3. p = 1 
Since /3 is less than ,8, (1.29), this case is qualitatively similar to /3 = 0 except that the 
symmetry is distorted. It is not difficult for the reader to imagine the bifurcation 
sequences. Again at least one steady state exists for all possible parameter values. No 
time-dependent attractors are found. The bifurcation sets are shown in figure 10. 

We shall discuss some additional conclusions of the preceding analysis in 97. First, 
however, we consider the case of anisotropic pressure forcing, with A ,  $. 0 but 
A,, = 0. 

6. Dynamics of a bubble forced by an anistropic pressure distribution, 
A ,  = 0 

Again we start the bifurcation analysis by identifying the fixed points. The fixed 
points can be found by the following steps. Solving (43a) and (43b) for ro and 
(26, - O0), we get 

2 
tan (26, - 0,) = - r: 

= 4/N2+(/3-242' N ( P - 2 4 '  

Substituting these results into (43 c) and (43 d ) ,  and eliminating On, we obtain 

A; = 0. 1 1 
Equation (68) can be used to solve for the amplitude of the shape mode at fixed 

points of the system (41). Once r, is known, it can be substituted into (67a) to obtain 
the corresponding amplitude of the breathing mode. For fixed N-, A,- and /?-values, we 
can also obtain the bifurcation diagram, rn versus (T, by plotting the level curves of (68). 
If we substitute r ,  for rn by using (67a), we can also obtain the bifurcation diagram, 
r, versus (T. 

A stability analysis of the above fixed points could be pursued in the same manner 
as for the isotropically forced case. However, owing to the complicated form of the 
roots of the cubic equation (68), a numerical method provides a simpler approach. The 
program AUTO is again used. 

The bifurcation sets obtained using AUTO for ,8 = 0 are presented in figure 1 1 .  The 
parabolic shaped curve in this figure corresponds to the (T- and A,,-values at which 
Hopf bifurcation occurs. Inside the curve, there is no time-independent stable fixed 
point. In this zone, the two amplitude functions, a0 and a,, of the volume and shape 
modes are time modulated. This time modulation may be periodic on a slow timescale 
or it may be chaotic. In addition to the curve corresponding to the Hopf bifurcation, 
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FIGURE 9. Projections of phase diagrams into (ro, r,)-space for various values of CT which lie in the 
interval of figure 7 for which no stable states exist. 

there are two needle-shaped curves which correspond to a saddle-node bifurcation. 
Inside these curves, there are two stable fixed points, both of which involve volume and 
shape modes of constant amplitude. However, one fixed point corresponds to volume 
and shape oscillations of significantly larger amplitude than the other; this will be seen 
clearly later in figure 12. In experiments where the forcing amplitude (or the frequency) 
is slowly changed, the transitions from one fixed point to the other will depend on 
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FIGURE 11. Bifurcation sets in (a, A,)-space for fixed = 0. 

whether we are increasing or decreasing the forcing amplitude (or frequency). For 
parameters outside the above three curves, there is only one stable fixed point. 

To understand the bifurcation sequences, we take a horizontal cut of figure 1 1  and 
plot the bifurcation diagram for fixed A ,  = 3. The projections of the bifurcation 
diagram in (a,r,)-space and ((~,r,)-space are shown in figure 12(a) and 12(b) 
respectively. For large positive (T, corresponding to high-frequency forcing, the 
amplitude of the breathing mode is very small. However, as g decreases below gs1, a 
saddle-node bifurcation occurs. The amplitudes of both the breathing mode and the 
shape mode jump to a larger value. As (T further decreases, the amplitude of the 
breathing mode remains more or less the same while the amplitude of the shape mode 
decreases monotonically, which is typical of systems with quadratic nonlinearity for 
which responses of maximum amplitude occur away from exact resonance. As (T gets 
closer to zero, the stable steady state becomes unstable through a Hopf bifurcation at 
crHopf, where gHopf  = 0.561. Within the interval of (T in (0, gHOpf ) ,  there are only time- 
dependent attractors, which are found to be either periodic or chaotic depending on the 
exact value of g. In this region, the amplitude functions for both the volume mode and 
the shape mode are either periodic or chaotic functions of the slow time variable, 7. 
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FIGURE 12. Projections of bifurcation diagrams into (a) (cr, r,)-space and (b) (cr, r,)-space for p = 0 
and A ,  = 3. Solid lines, stable; dashed lines, unstable. 

Calculation by AUTO shows that a branch of periodic solutions connects the two 
Hopf bifurcation points at B = - vFopf and B = vHopf. Focusing on the positive half 
of the interval, at vHopf, a supercritical bifurcation occurs leading to stable periodic 
orbits for B slightly less than rHopf. As B further decreases, this branch of periodic 
orbits soon loses stability through a period-doubling bifurcation at B = 0.523. This 
now unstable branch regains stability through a saddle-node type of bifurcation (of 
periodic orbits) at B = 0.118. It remains stable until B = 0. The behaviour of the 
periodic orbits on the other half of the interval can be obtained by symmetry. 
Conceivably, the period-doubling bifurcation at B = 0.523 is followed by a period- 
doubling cascade which accumulates at B = 0.515 so chaos occurs for B just smaller 
than B = 0.515. It appears that the loss of stability of the periodic orbit for B slightly 
greater than B = 0.1 18 marks one end of the interval of chaos. An investigation of the 
cause of the transition between periodic and chaotic motions at B = 0.225 and 
B = 0.458 is beyond the scope of this paper. 

Merely following the periodic solutions bifurcating at the Hopf bifurcation points 
will not detect time-dependent attractors that are not connected to the above periodic 
solutions through bifurcations. Hence we use numerical integration to study the time- 
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FIGURE 13. Overall dynamics of the bubble for A,, = 0, A ,  = 3, p = 0. 

dependent attractors for various values of cr on the interval ( O , c r H o p f )  in a similar 
manner as for the isotropically forced case. We find that the attractors are periodic 
except for r on the intervals of (0.119,0.225) and (0.458, 0.515) as shown in figure 13. 
In figure 14, we plot numerically calculated projections of the attractors into (ro, rn)- 
space for various values of cr on the interval ( O , c r H o p f ) .  The transition from a stable 
fixed point at CT = 0.6 through a series of periodic and chaotic solutions as cr is 
decreased to 0 is clearly visible. 

We note that for the anisotropically forced case, although chaos can indeed occur 
for ,8 = 0 as we might have expected from our previous work (Feng & Leal 1993), the 
occurrence of chaos is dependent on the forcing frequency. 

The bifurcation sets for ,8 = 2.0 as shown in figure 15. Note that the symmetry of 
figure 11 is destroyed, but other than that, there is no significant difference between 
these two figures. 

7. Physical interpretation 
In the following, we discuss the physical interpretation of several of the results 

obtained in the previous two sections. In particular we analyse the stability of a 
pulsating spherical bubble, the effect of frequency detuning and the consequences of 
chaotic bubble oscillations. We note that since the assumptions leading to the 
amplitude equations are just scaling assumptions, our amplitude equations are valid 
even when they yield chaotic solutions. 

7.1. Stability of a pulsating spherical bubble 
Equation (52) gives the criterion for stability of a pulsating spherical bubble. Although 
it is obtained from a general analysis of (41), whose derivation in $3 is based on the 
assumption that the forcing frequency is close to the natural frequency of the volume 
mode, we know from the discussion in $4, that the stability criterion is equally valid 
for forcing frequencies that are not near the resonance frequency of the volume mode. 
From our earlier discussion, it is also evident that the stability criterion for a pulsating 
spherical bubble is applicable to both an ideal gas bubble and an isothermal vapour 
bubble. 

Substituting (40) and (42) into (52), we obtain 

Multiplying both sides of (69) by e and substituting (18) and (16) into it, we have 
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Finally recalling (38) and (39), we can express the stability criterion in the following 
form : 

[(2(2n + I)(n + 2) s)2 + (20 - 20,)2]t. If' < (4n - 1) o, (70) 
2 

When the viscous effect is ignored, (70) is identical to the stability criterion obtained 
by Feng & Leal (1993). Note however that the oscillation frequency of the breathing 
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FIGURE 14. Projection of phase diagrams into (ro, r,)-space for various values of cr which lie in the 
interval of figure 12 for which no stable steady states exist. 

mode is 2 0 .  The stability boundary defined by (70) is shown in figure 16. The stability 
boundary for inviscid fluids is also given (dashed lines). In our previous work (Feng & 
Leal 1993), we pointed out that the stable region for higher modes is smaller than that 
for the lower modes. From figure 16, we conclude that the same is true here. The higher 
modes, though having much higher dissipation, are still less stable than the lower 
modes. The implication is that a bubble oscillating at higher frequency is less stable 
than the same bubble oscillating at lower frequency. The result is not too surprising 
when we recall that the kinetic energy of a pulsating bubble is proportional to the 
square of the frequency and it is reasonable to assume that a bubble with more energy 
is less stable. The larger dissipation of the higher modes is not sufficient to counter- 
balance the increased kinetic energy associated with higher oscillation frequency. 

7.2. Efect of frequency detuning 
In the isotropically forced case, chaos is found to occur only for p > p,, and on an 
interval of rr which lies between +,!I and ip. We know that when ,!I = 0 exact internal 
resonance occurs, and that when = :,!I exact resonance between the shape = 0 or 
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FIGURE 16. Stability boundaries for resonances between volume mode and various shape modes. 
Solid lines, S = 0.01 ; dashed lines, S = 0. 

mode or the volume mode and the forcing occurs. In none of these exact resonance 
cases do we find chaos. This is not true for the anisotropically forced case. We have 
shown that chaos occurs in this case even for exact internal resonance conditions. 

7.3. Consequences of chaotic bubble oscillations 
In figure 17, we show the power spectra of ro for two of the cases shown in figure 9, 
as determined through a fast-Fourier-transform program given in Miles (1984a). In the 
first case, CT = 0.70, where there is a periodic attractor as shown in figure 9, the power 
spectra shown in figure 17(a) consists of a large peak at the frequency of periodicity 
as well as its higher harmonics. When the attractor is chaotic however (at CT = 0.95), 
we observe a broadband power spectrum. Since r,, is associated with changes of the 
bubble volume, when chaotic attractors arise in our amplitude equation, we expect any 
sound produced by oscillations of bubble volume to have a similarly broadband power 
spectra. 

In addition, chaos also results in dramatic effects on the oscillation amplitudes. This 
is clearly shown in figure 7 ,  where the dots indicate peak amplitudes of both the volume 
mode and the shape mode; recall that on the interval gH1 < CT < uH2, there are no 
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FIGURE 17. Power spectra of ro for (a) g = 0.70, (b) g = 0.95. F and L are defined 
as in Miles (1984~). 

stable fixed points. Note that the peak amplitudes are about three to four times larger 
than the largest amplitudes of the steady state. Interestingly the peak amplitude of the 
volume mode is very close to the amplitude that would occur for the volume mode if 
no shape deformation were allowed (dashed curves of figure 7a).  

In many physical applications, it is the peak amplitude that is of relevance. For 
example, when the peak amplitude of the shape mode exceeds a certain value, it may 
suggest that the shear stress in the fluid has exceeded a threshold value or that the 
bubble is breaking. 

We also observe from figure 7(b)  that as we decrease the forcing frequency, the 
transition from regular motions to chaotic motions is not continuous. At (T roughly 
equal to 1, we see stable oscillations of both the volume mode and the shape mode. 
However, as B is decreased a little bit further, we encounter a catastrophic phenomenon 
where the bubble oscillation changes from regular to chaotic with only a very slight 
change of the forcing frequency. 
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One primary objective of this work was to provide a framework to guide 
corresponding experimental studies. Since all of the different types of attractors 
discovered above occur on a narrow frequency interval due to the near-resonance 
conditions (15) and (16), a detailed study of the chaotic attractors is not given. For 
instance, though it is possible, using numerical means, to identify period-doubling 
bifurcation sequences which lead to chaotic motions from regular motions, such a 
result, in our opinion, would not be very useful in a real experiment because of the 
demand on the frequency resolution of the instrument. The result that we believe is 
most useful in guiding experiments is the bifurcation diagrams we obtained. Through 
these bifurcation diagrams, we illustrated the sequences of transition between periodic, 
quasi-periodic and chaotic bubble oscillations. In actual experiments, though we 
cannot expect accurate quantitative agreement with the theory, qualitative agreement, 
specifically the sequences of transitions, is expected. Furthermore, for the isotropically 
forced case, we have identified a critical internal frequency detuning p, below which 
chaotic bubble oscillation has not been observed. 

This work was supported primarily by a grant from the Fluid Mechanics program 
of the ONR. We also acknowledge partial support by NASA through the Microgravity 
Science Program. Suggestions and criticisms from the referees are appreciated. 

Appendix. Asymptotic properties of the amplitude equations (44) 

system : 
To make our analysis slightly more general, we consider the following dynamical 

X ,  = - dl x0 - (p- 2a)y0 - 2 ~ ,  Y,, 

Jjo = ( p - 2 ~ )  xo-diy, + x~-Y: + A , ,  

R, = - d2 X, + VY, - (Yo X, - xo Y n ) ,  

i, = - ax, - d,Y, +X, X, +YOY, + A , ,  

where an over-dot corresponds to differentiation with respect to a time-like variable 7. 
If d, = 2/N and d, = 1, (44) is recovered. We also assume that d2 > dl > 0, which is the 
case we are interested in since N > 2. Let 

R2 = X: +y: + X: +vi. 
Differentiate R2 with respect to 7. Substituting the above differential equations for 
X o ,  Po, etc. we obtain 

RR = - d 1 ( ~ :  +v:) - d,(X: +Y:) + Aoy, + A ,  yfi, 

i.e. 

Using 

we get 
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where 

The last step follows from the fact that dz > dl > 0. Thus we see that for all 
R 2 R,, R < 0. Therefore, all attractors of the dynamical system must lie within a 
hypersphere of radius R,. The radius of the hypersphere, for the special cases of either 
A ,  = 0 or A ,  = 0, is proportional to the forcing amplitude and inversely proportional 
to the damping coefficient of the weaker one. 
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